Full-Stack Correctness in Wasm

Eliminating Bugs Inside and Outside the Sandbox

Chris Fallin (F5)
Invited Talk, WAW 2025

WebAssemny IS a Secure Sandbox

8 https://webassembly.org

m Overview Getting Started Specs Feature Extensions Community FAQ

WEBASSEMBLY

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based

virtual machine. Wasm is designed as a portable compilation target for programming
languages, enabling deployment on the web for client and server applications.

WebAssemny IS a Secure Sandbox

8 https://webassembly.org

Overview Getting Started Specs Feature Extensions Community FAQ

WEBASSEMBLY

WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based

virtual machine. Wasm is designed as a portable compilation target for programming
languages, enabling deployment on the web for client and server applications.

Safe

WebAssembly describes a memory-safe, sandboxed execution
environment that may even be implemented inside existing JavaScript
virtual machines. When embedded in the web, WebAssembly will
enforce the same-origin and permissions security policies of the
browser.

WebAssembly is a Secure Sandbox

Announcing the Bytecode Alliance:

Building a secure by default,
composable future for WebAssembly

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

WebAssembly is a Secure Sandbox

Announcing the Bytecode Alliance:
Building a secure by default,
composable future for WebAssembly

secure by default

encapsulated by default.

This gives us memory isolation between the two modules.

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

WebAssembly is a Secure Sandbox

Announcing the Bytecode Alliance:
Building a secure by default,
composable future for WebAssembly

secure by default

encapsulated by default.

This gives us memory isolation between the two modules.

e sSecure

https://bytecodealliance.org/articles/announcing-the-bytecode-alliance

WebAssembly is a Secure Sandbox

Wasmtime

A fast and secure runtime for WebAssembly

https://wasmtime/dev/

https://cranelift.dev/

https://wasmtime/dev/
https://cranelift.dev/

WebAssembly is a Secure Sandbox

Wasmtime

A fast and secure runtime for WebAssembly

strongly focused on correctness and security.

https://wasmtime/dev/

https://cranelift.dev/

https://wasmtime/dev/
https://cranelift.dev/

WebAssembly is a Secure Sandbox

How WebAssembly Offers Secure
Development through Sandboxing

Industry experts discuss why and how WebAssembly offers developers a significantly higher
security bar than previous technologies.

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

How WebAssembly Offers Secure
Development through Sandboxing

Industry experts discuss why and how WebAssembly offers developers a significantly higher
security bar than previous technologies.

It IS very secure In that it uses sandboxed memory,

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

How WebAssembly Offers Secure
Development through Sandboxing

Industry experts discuss why and how WebAssembly offers developers a significantly higher
security bar than previous technologies.

It IS very secure In that it uses sandboxed memory,

“Those things make WebAssembly incredibly more secure as a starting point
for development.”

https://thenewstack.io/how-webassembly-offers-secure-development-through-sandboxing/

WebAssembly is a Secure Sandbox

It IS very secure In that it uses sandboxed memory,

WebAssembly is a Secure Sandbox

It IS very secure

WebAssembly is a Secure Sandbox

It IS very secure

WebAssembly is a Secure Sandbox?

It IS very secure

Wasm engine and

compiler engineers:

CVE-2021-32629

CVE-2021-32629

* April 21, 2021 was a beautiful morning in California...

CVE-2021-32629

* April 21, 2021 was a beautiful morning in California...

* “The daemon keeps segfaulting”

CVE-2021-32629

* April 21, 2021 was a beautiful morning in California...

 “The daemon keeps segfaulting” [this never happens]

CVE-2021-32629

* April 21, 2021 was a beautiful morning in California...
 “The daemon keeps segfaulting” [this never happens]

* “faults are coming from inside compiled Wasm code”

CVE-2021-32629

* April 21, 2021 was a beautiful morning in California...
 “The daemon keeps segfaulting” [this never happens]
» “faults are coming from inside compiled Wasm code”

* “I'm calling an incident”

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

CVE-2021-32629

 Summary. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

linear memory linear memory linear memory

host address space

| |
4GiB + guard

CVE-2021-32629

 Summary. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

132.10ad offset=3
host address space

‘ \
4GiB + guard

CVE-2021-32629

 Summary. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

VO = base # 164
vl o= L # 132
| . _q” v2 = uextend.i164 vl
132.1load offset 8 v3 = iadd.i64 vO. v2
; i ~~.v4 = load.i32 v3+8

host address space

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

vl = base # 164 . rdi, ..
vl = .. # 132 add ecx, # Wasm addr
| v2 = uextend.i64 vl # (noth1ng)
v3d = 1add.164 v0O, v2 add rdi, rcx
; - v4 = load.132 v3+3 mov eax, [rdi+3]

host address space

4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

vl = base # 164 . rdi, ..
vl = .. # 132 add ecx, # Wasm addr
| v2 = uextend.i64 vl # (noth1ng)
v3d = 1add.164 v0O, v2 add rdi, rcx
; - v4 = load.132 v3+3 mov eax, [rdi+3]

host address space

‘ ‘ x86-64: implicit zero-extend on all 32-bit insts
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

vl = base # 164 . rdi, ..
vl = .. # 132 add ecx, # Wasm addr
| v2 = uextend.i64 vl # (noth1ng)
v3d = 1add.164 v0O, v2 add rdi, rcx
; - v4 = load.132 v3+3 mov eax, [rdi+3]

host address space

‘ ‘ x86-64: implicit zero-extend on all 32-bit insts
4GiB + guard —> optimization: elide uextend

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

rdi, ..
add ecx, .. # Wasm addr
_ . -+

(noth1ng)

add rdi, rcx

' | mov eax, [rdi+8]
host address space

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

rdi,

| ado ecx, .. # Wasm addr
: : H

H-

REGALLOC RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

rdi,

| ado ecx, .. # Wasm addr
mov [rsp+K], rcx # SPILL
: - H

11

mov rcx, [rsp+K] # RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

rdi, ..

| ado ecx, .. # Wasm addr
mov [rsp+K], rcx # SPILL
: - H

11

mov rcx, [rsp+K] # RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

‘ ‘ Optimization: spill/reload actual value width
4GiB + guard (important for f32/f64 in 128-bit XMM regs)

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

rdi, ..

| add ecx, .. # _Wasm addr
linear memory mov [rsp+K], ecx # SPILL
: : H

n

mov ecx; [rsp+K] # RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

‘ ‘ Optimization: spill/reload actual value width
4GiB + guard (important for f32/f64 in 128-bit XMM regs)

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

1. Optimization: elide 32-to-64

zero-extends on x86-64 — rdi, ..
use implicit dest widening add ecx, .. # Wasm addr
mov [rsp+K], rcx # SPILL
' ..
mov rcx, [rsp+K] # RELOAD

add rdi, rcx
mov eax, [rdi+8]

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

1. Optimization: elide 32-to-64

zero-extends on x86-64 — rdi, ..
use implicit dest widening add ecx, .. # Wasm addr

mov [rsp+K], ecx # SPILL
...

mov ecx, [rsp+K] # RELOAD
add rdi, rcx

mov eax, [rdi+8]

2. Optimization: spill only actual value width

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

1. Optimization: elide 32-to-64

zero-extends on x86-64 — rdi, ..
use implicit dest widening add ecx, .. # Wasm addr

mov [rsp+K], ecx # SPILL
...

mov ecx, [rsp+K] # RELOAD
add rdi, rcx

mov eax, [rdi+8]

2. Optimization: spill only actual value width

3. Bug: use upper bits of register when
technically undefined per IR->machine

mapping

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

1. Optimization: elide 32-to-64

zero-extends on x86-64 — rdi, ..
use implicit dest widening add ecx, .. # Wasm addr

mov [rsp+K], ecx # SPILL
...

mov ecx, [rsp+K] # RELOAD
add rdi, rcx

mov eax, [rdi+8]

2. Optimization: spill only actual value width

3. Bug: use upper bits of register when
technically undefined per IR->machine

mapping
—> we elided uextend but value iIs still narrow

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

1. Optimization: elide 32-to-64

zero-extends on x86-64 — v ordi, .)
use implicit dest widening add ecx, .. # Wasm addr
mov [rsp+K], ecx # SPILL

H

T eee
movsx rcx, [rsp+K] # RELOAD
add rdi, rcx

mov eax, [rdi+8]

2. Optimization: spill only actual value width

3. Bug: use upper bits of register when
technically undefined per IR->machine

mapping

4. Questionable choice: sign-extend on reload??

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

Wasm addr: 3GiB
l rdi,

| ado ecx, .. # Wasm addr
mov [rsp+K], ecx # SPILL
- - +

H

movsx rcx, [rsp+K] # RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

Wasm addr: 3GiB
l rdi,

| ado ecx, .. # Wasm addr
mov [rsp+K], ecx # SPILL
- - +

H

movsx rcx, [rsp+K] # RELOAD

| | add rdi, rcx
host address space mov eax, [rdi+8]

| |
4GiB + guard

CVE-2021-32629

 Summary. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

l Wasm addr: 3GiB

linear memory linear memory
host address space

| |
4GiB + guard

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

l W\
linear memory linear memory

host address space

|
4GiB + guard

- SN I

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

o Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

o Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

« How can we avoid ever having this problem again?

CVE-2021-32629

 Summary:. a miscompilation could result in a Wasm instance accessing
memory addresses 2GiB prior to its linear memory in host address space (!)

o Aftermath: emergency version bump internally; patch release; forcing function
to develop our CVE release process in BA / Wasmtime (since exercised more!)

« How can we avoid ever having this problem again*?

CVE-2023-26489

CVE-2023-26489

* Aside: it did happen again, two years later

o« Summary: base + uextend(index << 3) folded to base + uextend(index) << 3 in
Xx86-64 addressing mode selection; reach up to 34GiB beyond a memory

CVE-2023-26489

* Aside: it did happen again, two years later

o« Summary: base + uextend(index << 3) folded to base + uextend(index) << 3 in
Xx86-64 addressing mode selection; reach up to 34GiB beyond a memory

* One must imagine Sisyphus verification researchers happy

SFl and Trusting Compilers

Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

One way to provide fault 1solation among cooperating
software modules 1s to place each 1n its own address
space. However, for tightly-coupled modules, this so-
lution incurs prohibitive context switch overhead. In
this paper, we present a software approach to imple-

menting fault 1solation within a single address space.

SOSP 1993

SFl and Trusting Compilers

Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

SOSP 1993

 We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

SFl and Trusting Compilers

Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

SOSP 1993

 We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

 Browser: fast Wasm-to-JS interaction (~native func call) on one webpage

o Server-side: extremely dense multi-tenant environments (timeslicing)

SFl and Trusting Compilers

Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

SOSP 1993

 We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

 Browser: fast Wasm-to-JS interaction (~native func call) on one webpage
o Server-side: extremely dense multi-tenant environments (timeslicing)

* This is Wasm’s secret superpower (tiny sandboxes — nanoprocesses)

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

SFl and Trusting Compilers

Efficient Software-Based Fault Isolation

Robert Wahbe Steven Lucco Thomas E. Anderson Susan L. Graham

SOSP 1993

 We put many instances in a single address space, and add software checks
inline, to enable fast context switching — essential for many workloads!

 Browser: fast Wasm-to-JS interaction (~native func call) on one webpage
o Server-side: extremely dense multi-tenant environments (timeslicing)

* This is Wasm’s secret superpower (tiny sandboxes — nanoprocesses)

 But we must trust the compiler

https://hacks.mozilla.org/2019/11/announcing-the-bytecode-alliance/

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness

» Differential fuzzing against. Wasm spec interp, wasmi, V8

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness
» Differential fuzzing against. Wasm spec interp, wasmi, V8

* Fuzzing with symbolic translation validation of register allocation

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness
» Differential fuzzing against. Wasm spec interp, wasmi, V8
* Fuzzing with symbolic translation validation of register allocation

» “Chaos testing” in compiler pipeline

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness
» Differential fuzzing against. Wasm spec interp, wasmi, V8
* Fuzzing with symbolic translation validation of register allocation
e “Chaos testing” in compiler pipeline

 trial by fire in real world: Cranelift as rustc backend

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness
» Differential fuzzing against. Wasm spec interp, wasmi, V8
* Fuzzing with symbolic translation validation of register allocation
e “Chaos testing” in compiler pipeline
 trial by fire in real world: Cranelift as rustc backend

« Somehow these CVEs still happen occasionally (~0.5 per year)

How to Write a Correct Compiler

 We do a /ot to try to ensure correctness
» Differential fuzzing against. Wasm spec interp, wasmi, V8
* Fuzzing with symbolic translation validation of register allocation
e “Chaos testing” in compiler pipeline
 trial by fire in real world: Cranelift as rustc backend
« Somehow these CVEs still happen occasionally (~0.5 per year)

* “| would simply prove the compiler correct”

How to Write a Correct Compiler

* “| would simply prove the compiler correct”

How to Write a Correct Compiler

* “| would simply prove the compiler correct”

¥ Challenge Accepted

Anti-Goal

THE COMPCERT C COMPILER

CompCert C is a compiler for the C programming language. Its intended use is the

compilation of life-critical and mission-critical software written in C and meeting high

levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a
few extensions. It produces machine code for the PowerPC, ARM, RISC-V and x86 (32 and 64
bits) architectures. Performance of the generated code is decent but not outstanding: on

PowerPC, about 90% of the performance of GCC version 4 at optimization level 1.

What sets CompCert C apart from any other production compiler, is that it is formally
verified, using machine-assisted mathematical proofs, to be exempt from miscompilation

issues. In other words, the executable code it produces is proved to behave exactly as

specified by the semantics of the source C program. This level of confidence in the

Anti-Goal

THE COMPCERT C COMPILER

CompCert C is a compiler for the C programming L
compilation of life-critical and mission-critical soft
levels of assurance. It accepts most of the ISO C 9
few extensions. It produces machine code for the

bits) architectures. Performance of the generated

PowerPC, about 90% of the performance of GCC ve

What sets CompCert C apart from any other produ

verified, using machine-assisted mathematical prc

tenies, In other words, the executable code It prox CakeML is a functional programming language and an ecosystem of
specified by the semantics of the source C progran [OrOOfS and tools built around the language. The ecosystem includes a
proven-correct compiler that can bootstrap itself.

Anti-Goal

THE COMPCERT C COMPILER

‘JiL‘
- ‘

Download CompCert C & Read the manual

CompCert C is a compiler for the C programming language. Its intended use is the
compilation of life-critical and mission-critical software written in C and meeting high
levels of assurance. It accepts most of the ISO C 99 language, with some exceptions and a
few extensions. It produces machine code for the PowerPC, ARM, RISC-V and x86 (32 and 64

bits) architectures. Performance of the generated code is decent but not outstanding: on

PowerPC, about 90% of the performance of GCC version 4 at optimization level 1. CakeML is a functional programming language and an ecosystem of
proofs and tools built around the language. The ecosystem includes a
proven-correct compiler that can bootstrap itself.

What sets CompCert C apart from any other production compiler, is that it is formally
verified, using machine-assisted mathematical proofs, to be exempt from miscompilation

issues. In other words, the executable code it produces is proved to behave exactly as

specified by the semantics of the source C program. This level of confidence in the

* Engineered from scratch for verification (we have ~200KLoC existing code)
* Optimizations limited by provability (we don’t want to limit perf too much)

 Enormous manual effort (we’re a tiny team and verification is one of many
demands on us; can’t afford ~engineer-century of work)

Potential Goals?

 Can we verify a part of our compiler (where bugs are more common) more
thoroughly??

 Can we verify limited properties of the code (e.g. linear memory sandboxing)
end-to-end?

Potential Goals?

 Can we verify a part of our compiler (where bugs are more common) more
thoroughly??

— SMT on instruction selector rules (ASPLOS’24)

 Can we verify limited properties of the code (e.g. linear memory sandboxing)
end-to-end?

— Proof-carrying code (ongoing)

Outline

 Formal Verification in Instruction Selection
* Proof-Carrying Code for Sandboxing Logic

e Guest-Code Correctness

Instruction Lowering Verification

BA RFC 15: ISLE instruction-selection (pattern-matching) DSL, Aug 2021

Discussion: Future Implications for
Verification

Though we have not yet worked out all the details, we are confident that the
translation of rules expressed in the ISLE DSL into some machine-readable form for
formal verification efforts should be possible. This is primarily because of the
"equivalent-value" semantics that are inherent in a term-rewriting system. The
denotational value of a term is the symbolic or concrete value produced by the
Instruction it represents (depending on the interpretation); so "all" we have to do is
to write, e.qg., pre/post-conditions for some SMT-solver or theorem-prover that
describe the semantics of instruction terms on either side of the translation.

Instruction Lowering Verification

BA RFC 18: Cranelift roadmap for 2022 (Dec 2021)

In the next year we should attempt to find some concrete ways to achieve formal verification

of some part of the compiler. The instruction lowerings are the obvious choice, now that we
have ISLE.

Instruction Lowering Verification

e Dec 2021: contact from both Alexa VanHattum and Fraser Brown
(+ Alexa’s advisor Adrian Sampson and Fraser’s student
Monica Pardeshi)

Instruction Lowering Verification

e Dec 2021: contact from both Alexa VanHattum and Fraser Brown
(+ Alexa’s advisor Adrian Sampson and Fraser’s student
Monica Pardeshi)

¥ Academic collaboration acquired; let’s go!

Instruction Lowering Verification

Lightweight, Modular Verification for
WebAssembly-to-Native Instruction Selection

Alexa VanHattum Monica Pardeshi Chris Fallin

Wellesley College Carnegie Mellon University Fastly
Wellesley, MA, USA Pittsburgh, PA, USA San Francisco, CA, USA
avili@wellesley.edu mpardesh@andrew.cmu.edu cfallin@fastly.com

Adrian Sampson Fraser Brown

Cornell University Carnegie Mellon University
Ithaca, NY, USA Pittsburgh, PA, USA
asampson@cs.cornell.edu fraserb@andrew.cmu.edu

ASPLOS 2024

Instruction Lowering Verification

1 (rule
2 (lower (rotr))

(ab4_rotr 164))

Instruction Lowering Verification

1 (rule
2 (lower (rotr))

(ab4_rotr 164))

4

Cranelift IR (CLIF)

rotr (rotate right)

Instruction Lowering Verification

1 (rule
2 (lower (rotr))
- (ab4_rotr 164))
/ 'Y
Cranelift IR (CLIF) aarch64 machine code

rotr (rotate right) rotr (rotate right)

Instruction Lowering Verification

1 (rule
2 (lower (rotr

(ab4_rotr 164

4

'Y
Cranelift IR (CLIF) aarch64 machine code
rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) SMT (theory of bitvectors)

Instruction Lowering Verification

1 (rule
2 (lower (rotr))

(ab4_rotr 164))

4

'Y
Cranelift IR (CLIF) aarch64 machine code
rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) H SMT (theory of bitvectors)

Instruction Lowering Verification

1 (rule
2 (lower (rotr))

(ab4_rotr 164))

4

'Y
Cranelift IR (CLIF) aarch64 machine code
rotr (rotate right) rotr (rotate right)

SMT (theory of bitvectors) H SMT (theory of bitvectors)

(or counterexample)

Instruction Lowering Verification

(lower (has type $I64 (rotr x y)) ..)

Instruction Lowering Verification

Lower
has type
value def

InstructionData.BinaryOp (Op.Rotr)

Instruction Lowering Verification

Lower
has type
value def

InstructionData.BinaryOp (Op.Rotr)

(ab4 rotr x vy)

Instruction Lowering Verification

Lower
has type
value def

InstructionData.BinaryOp (Op.Rotr)

InstResult.Inst
Inst.AluRRR (AluOp.Rotr)

Instruction Lowering Verification

Lower
has type
value def

InstructionData.BinaryOp (Op.Rotr)

InstResult.Inst

Inst.AluRRR (AluOp.Rotr)
put 1n reg X

put 1n reg vy

Instruction Lowering Verification

ue4 from immé64 1

InstructionData.BinaryOp (Op.Add) InstructionData.Const
value def value def

InstructionData.BinaryOp (Op.Mul)
value def

has type
lower

InstResult.Inst
Inst.ALuRRR (AluOp.Madd)

put 1n_reg X put _1n_reg vy put 1n_reg z

Instruction Lowering Verification

some node
some node some node
some node some node
some node
some node some node some node
some node some node
some node
some node some node
some node
some node
some node some node
some node
some node
some node
some node
some node
some node
some node some node
some node
some node

some node

Instruction Lowering Verification

Rust FFI (IR accessor primitives)

oooooooooooooooo

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeeeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeee
eeeeeeeeeeeeeeee

eeeeeeee
eeeeeeee

eeeeeeee
eeeeeeee

eeeeeeee

oooooooo

eeeeeeeeeeeeeeee

eeeeeeee

eeeeeeee

Rust FFI (instruction emit primitives)

Instruction Lowering Verification

Rust FFI (IR accessor primitives)

oooooooooooooooo

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeeeeeeeeeee
eeeeeeee

eeeeeeee
eeeeeeeeeeeeeeee

eeeeeeee
eeeeeeee

eeeeeeee
eeeeeeee

eeeeeeee

caoma nNnde

eeeeeeee

eeeeeeee

Rust FFI (instruction emit primitives)

Instruction Lowering Verification

(spec (cmp ty x vy)
(provide (= result (subs ty x y)))

(require
(or (= ty 32) (= ty 64))))

cranelift/codegen/src/isa/aarch64/inst.isle

Instruction Lowering Verification

* | ots more to actually make this work!
* [ype-polymorphism in rules —> “instantiate” at concrete widths
* Type-inference to use narrower bitvectors
* Full system of specifying “model domain” values for ISLE values

 (Good ergonomics around showing counterexamples

Instruction Lowering Verification

|t finds real bugs
 Reproduced x86-64 amode bug (CVE-2023-26489)

* Arithmetic edge cases in divides, count-leading-sign of narrow values,
boolean simplification rules, ...

 Real counterexamples are invaluable
* Ongoing extension work (especially: tying to real ISA semantics)

* Ongoing discussions on how to integrate into our workflow to keep verified

Instruction Lowering Verification

 But... can we verify something end-to-end??

m +
0 . .
O o 3%% S 5 5 O
Wasm o ® £ O 0 P 73k-8 Machine
4= + O .—
5 S O L0 c 0 T
= £ - -

Instruction Lowering Verification

 But... can we verify something end-to-end??

m +
0 . .
O o 3%% S 5 5 O
Wasm o ® £ O 0 P 73k-8 Machine
4= + O .—
5 S O L0 c 0 T
= £ - -

Verified
(in progress)

Instruction Lowering Verification

 But... can we verify something end-to-end??

n +
O 5 G < S S 5 5 O
Wasm o ® £ O 0 P 73k-8 Machine
4= + O .—
bytecode g CLF ey CLIF gy VCode e 3 Code

- © o N = n O Q=

3 S O30 c 0 T

2 e 2

Verified Translation

(in progress) Validation

Instruction Lowering Verification

 But... can we verify something end-to-end??

L + =
. .
23 $ 5 S 5 5 5
Wasm o ® £ O 0 P 73k-8 Machine
4= + O .—
g - o220 2w r =
< = -
oY nn Verified Translation

(in progress) Validation

Instruction Lowering Verification

 But... can we verify something end-to-end??

L + =
0 5 gS S S 5 5 5
Wasm o ® £ O 0 P 73k-8 Machine
4= + O .—
bytecode y CLIF o CLIF S0 vCode mo Ml Code

E O N = = D ® O

= 020 g 0 @ Z
S B

oY nn Verified Translation

. " (in progress) Validation

+ integration/glue bugs!

Sandbox Verification, End-to-End

* “Prove the compiler correct” is Hard(tm)

Sandbox Verification, End-to-End

* “Prove the compiler correct” is Hard(tm)

 Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

Sandbox Verification, End-to-End

* “Prove the compiler correct” is Hard(tm)

 Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

 Build an independent checker that operates on machine code: compiler no
longer in the TCB (!)

Sandbox Verification, End-to-End

* “Prove the compiler correct” is Hard(tm)

 Can we prove that all memory accesses in machine code access Wasm
memories with valid bounds-checking (or other internal VM data)?

 Build an independent checker that operates on machine code: compiler no
i |
longer in the TCB (!) NDSS 2021

Jlosepsiii, HOo npoBepsiii: SFI safety for native-compiled Wasm

Evan Johnson' David Thien' Yousef Alhessi' Shravan Narayan'

Fraser Brown* Sorin Lerner’ Tyler McMullen® Stefan Savage! Deian Stefan!
"UC San Diego *Stanford “Fastly Labs

Sandbox Verification, End-to-End

NDSS 2021

Jlosepsiii, Ho npoBepsiii: SFI safety for native-compiled Wasm

Evan Johnson' David Thien' Yousef Alhessi' Shravan Narayan'

Fraser Brown* Sorin Lerner’ Tyler McMullen® Stefan Savage! Deian Stefan!
"UC San Diego *Stanford “Fastly Labs

* |t even operates on Cranelift!

Sandbox Verification, End-to-End

NDSS 2021

Jlosepsiii, Ho npoBepsiii: SFI safety for native-compiled Wasm

Evan Johnson' David Thien' Yousef Alhessi' Shravan Narayan'

Fraser Brown* Sorin Lerner’ Tyler McMullen® Stefan Savage! Deian Stefan!
"UC San Diego *Stanford “Fastly Labs

* |t even operates on Cranelift!

e ... but not Wasmtime (older Lucet runtime)

Sandbox Verification, End-to-End

NDSS 2021

Jlosepsiii, Ho npoBepsiii: SFI safety for native-compiled Wasm

Evan Johnson' David Thien' Yousef Alhessi' Shravan Narayan'

Fraser Brown* Sorin Lerner’ Tyler McMullen® Stefan Savage! Deian Stefan!
"UC San Diego *Stanford “Fastly Labs

* |t even operates on Cranelift!
e ... but not Wasmtime (older Lucet runtime)

* ... and on the output of a much older (poorly optimizing) Cranelift

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Key idea: |lattice-based abstract interpretation over machine registers

rdi: heap base
add eax, .. # an 132 Wasm address
mov rbx, [rdi+rax+0Ox100]

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Key idea: |lattice-based abstract interpretation over machine registers

rdi: heap base rdi: HeapBase
add eax, .. # an 132 Wasm address
mov rbx, [rdi+rax+0Ox100]

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Key idea: |lattice-based abstract interpretation over machine registers

rdi: heap base rai: HeapBase
add eax, .. # an 132 Wasm address rax: Bounded4GB
mov rbx, [rdi+rax+0Ox100]

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Key idea: |lattice-based abstract interpretation over machine registers

rdi: heap base rai: HeapBase
add eax, .. # an 132 Wasm address rax: Bounded4GB
mov rbx, [rdi+rax+0Ox100]

access to
HeapBase + Bounded4GB ->
valid heap address

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

VeriWasm

Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

* Prototyped after 2021 CVE for limited domain (one memory, no dynamic
bounds checking)

¢« 30% compile-time overhead

VeriWasm

Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

* Prototyped after 2021 CVE for limited domain (one memory, no dynamic
bounds checking)

¢« 30% compile-time overhead

 What about 2023, and full production feature support?

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?
 Multiple memories and tables

Lucet

l Single heap (4GiB + guard)
rdi——

- vmctx (globals, misc state)

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables

Lucet Wasmtime

-di — l 27 — - vmctx (globals, memories, tables)
- (regalloc)

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables 4GiB + guard

Lucet Wasmtime

rd] — l r?2? e

- (regalloc)

mem descriptor

.=

VMCtX

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables 4GiB + guard

Lucet Wasmtime

rdi—— l re? -><:
- (regalloc) -

mem descrlptor

bounds checked

VeriWasm

Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables — import vs. inline, dynamic vs. statlc,
shared vs. non-shared, different guard region sizes, ...

VeriWasm

* Verify memory safety (Wasm heap, funcref table), control-flow safety, and
stack safety (accesses to stackframes) — focus here on Wasm heap

 Update to modern Cranelift + Wasmtime?

 Multiple memories and tables — import vs. inline, dynamic vs. statlc,
shared vs. non-shared, different guard region sizes, ...

* Also, the optimizer got better!

Wanted: the Perfect Verifier

* Linear-time and -space verification

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ...

mov rbx, [r8+rax]

add r10, rax

cmp rax, r9

cmovae r10, <zero’d reg>
mov rcX, [r10]

add r12, rax

cmp rax, ri1

cmovae r12, <zero’d reg>
mov rdx, [r12]

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32

mov rbx, [r8+rax]

add r10, rax

cmp rax, r9

cmovae r10, <zero’d reg>
mov rcX, [r10]

add r12, rax

cmp rax, ri1

cmovae r12, <zero’d reg>
mov rdx, [r12]

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32

mov rbx, [r8+rax] Load from 4GiB-guard mem
add r10, rax

cmp rax, r9

cmovae r10, <zero’d reg>
mov rcX, [r10]

add r12, rax

cmp rax, ri1

cmovae r12, <zero’d reg>
mov rdx, [r12]

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32

mov rbx, [r8+rax] Load from 4GiB-guard mem
add r10, rax

cmp rax, r9 Bounds-check (Spectre)
cmovae r10, <zero’d reg> ,

mov rcx, [r10] Load from dynamic mem
add r12, rax

cmp rax, ri1
cmovae r12, <zero’d reg>
mov rdx, [r12]

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32

mov rbx, [r8+rax] Load from 4GiB-guard mem
add r10, rax

cmp rax, r9 Bounds-check (Spectre)
cmovae r10, <zero’d reg> ,

mov rcx, [r10] Load from dynamic mem
add r12, rax

cmp rax, ri1
cmovae r12, <zero’d reg>
mov rdx, [r12]

How do we describe rax in the abstract domain??

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32

mov rbx, [r8+rax] Load from 4GiB-guard mem
add r10, rax

cmp rax, r9 Bounds-check (Spectre)
cmovae r10, <zero’d reg> ,

mov rcx, [r10] Load from dynamic mem
add r12, rax

cmp rax, ri1
cmovae r12, <zero’d reg>

mov rdx, [r12] How do we describe rax in the abstract domain??
rax < 4GIB && rax <r9 && rax <rif

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eax, ... Compute an i32
mov rbx, [r8+rax] Load from 4GiB-guard mem
add r10, rax

eck (Spectre)

Quadratic behavior! @ dynamic mem

cmovae r12, <zero’d reg>

mov rdx, [r12] How do we describe rax in the abstract domain??
rax < 4GIB && rax <r9 && rax <rif

Wanted: the Perfect Verifier

* Linear-time and -space verification

add eay, ... Compute an i32

mov rbx, [r8+rax] Load from 4GiB-guard mem
;\r;]up'rla\;, Fé Bounds-check (Spectre)
cmovae r10, <zero'd reg> _

e A Load from dynamic mem

Two separate parts combined later
-> Symbolic(123) and CompareResult(123, r9)?7?

How does this scale across GVN/value renames?

stract domain??
rax < 4GIB && rax <r9 && rax <rif

Wanted: the Perfect Verifier

* Linear-time and -space verification

e Portable across ISAs

Wanted: the Perfect Verifier

* Linear-time and -space verification
 Portable across ISAs

* At least x86-64 and aarch64 (equally important production targets)

Wanted: the Perfect Verifier

* Linear-time and -space verification
* Portable across ISAs
* At least x86-64 and aarch64 (equally important production targets)

 With most logic platform-independent

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs
* At least x86-64 and aarch64 (equally important production targets)
 With most logic platform-independent

e |SA-specific work should encode instruction semantics, but that’s it:

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs
* At least x86-64 and aarch64 (equally important production targets)
 With most logic platform-independent

e |SA-specific work should encode instruction semantics, but that’s it:

mov rax, [r8 + 8*r9] -> rax = load(add(r8, scale(r9, 8)))

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs
* At least x86-64 and aarch64 (equally important production targets)
 With most logic platform-independent

e |SA-specific work should encode instruction semantics, but that’s it:
mov rax, [r8 + 8*r9] -> rax = load(add(r8, scale(r9, 8)))

Idr x20, [x19, w20, uxtw] -> x20 = load(add(x19, uextend(x20, 32, 64)))

Wanted: the Perfect Verifier

* Linear-time and -space verification
 Portable across ISAs

 Easy to keep up-to-date as optimizer is modified

Wanted: the Perfect Verifier

* Linear-time and -space verification
* Portable across ISAs
 Easy to keep up-to-date as optimizer is modified

* Adding clever rewrites might require more domain knowledge encoded

Wanted: the Perfect Verifier

* Linear-time and -space verification
* Portable across ISAs
 Easy to keep up-to-date as optimizer is modified
* Adding clever rewrites might require more domain knowledge encoded

e ... but we must not have to modify individual rules or passes to work with
the verifier

Wanted: the Perfect Verifier

* Linear-time and -space verification
* Portable across ISAs
 Easy to keep up-to-date as optimizer is modified

* Prove safety of all memory loads+stores

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs

 Easy to keep up-to-date as optimizer is modified
* Prove safety of all memory loads+stores

» Easily delineate our safety condition: “loads and stores occur according to
some description/understanding of the runtime’s data layout”

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs

 Easy to keep up-to-date as optimizer is modified
* Prove safety of all memory loads+stores

» Easily delineate our safety condition: “loads and stores occur according to
some description/understanding of the runtime’s data layout”

* This description is in the TCB; and the runtime (e.g. memory.grow) is; but
the compiller is not

Wanted: the Perfect Verifier

* Linear-time and -space verification

* Portable across ISAs

 Easy to keep up-to-date as optimizer is modified
* Prove safety of all memory loads+stores

* Fast enough to run in production (translation validation on all compilations)

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

* First: dynamic and static bounds, separately

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

* First: dynamic and static bounds, separately -> nope, GVN can combine

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

* First: dynamic and static bounds, separately -> nope, GVN can combine

e Second: lattice that includes both kinds of bounds -> nope, multiple
dynamic memories

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

What does work: static memories (like VeriWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

First: dynamic and static bounds, separately -> nope, GVN can combine

Second: lattice that includes both kinds of bounds -> nope, multiple
dynamic memories

Third: Set-of-upper-and-lower-bounds -> nope, not scalable

Spoiler: Work-in-Progress

* |’ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

e First: dynamic and static bounds, separately -> nope, GVN can combine

e Second: lattice that includes both kinds of bounds -> nope, multiple dynamic
memories

e Third: Set-of-upper-and-lower-bounds -> nope, not scalable

e Fourth: inequality solver (matrices + Gaussian reduction) -> nope, not scalable

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

* | think | have something that will work, with a trick

Spoiler: Work-in-Progress

* |'ve tried ~4 approaches; each time getting closer(?) on dynamic memories

 What does work: static memories (like VeriwWasm), over new Wasmtime data
structures and Cranelift optimizations; 1% compile-time overhead

* | think | have something that will work, with a trick

 This is a workshop talk, after all!

Proof-Carrying Code?

POPL 1997

Proof-Carrying Code

George C. Necula

School of Computer Science

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3891

necula®@cs.cmu.edu

 Key idea: compiler emits proof steps to check — simpler than from-scratch
analysis of binary artifact

Proof-Carrying Code?

POPL 1997

Proof-Carrying Code

George C. Necula

School of Computer Science

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3891

necula®@cs.cmu.edu

 Key idea: compiler emits proof steps to check — simpler than from-scratch
analysis of binary artifact

 Think of it like “typed assembly” + type-preserving compilation

Proof-Carrying Code

function u@:0(164 vmctx, 164) fast {
gv3d | mem(mt®, Ox0, Ox0) vimc t X
gvd | mem(mtl, Ox0, 0Ox0) load.164 notrap aligned
readonly checked gv3+30

mt® = struct 88
{ 80: 164 readonly ! mem(mtl, Ox0, 0Ox0) }
mtl = memory 0x130000000

block/(v@: 164, vl1l: 164):
v2 = 1reduce.i32 vl
v3 ! range(64, 0Ox0, Oxffffffff) = uextend.164 v2
vd | mem(mtl, Ox0, Ox0) = global value.i164 gv4
v I mem(mtl, Ox0, Oxffffffff) = 1add v4, v3
vo = load.f64 1little checked heap v5

PrOOf'Carrying COde Given fact: first arg is vmctx

functiom=ua&r&rdd—vmcrx ;104 fast {
gv3 ! mem(mt@ @x@ Ox0) vimc t X

gy 4 Hememr e 0RO —0%0) load.164 notrap aligned
readonly checked gv3+30

mt® = struct 88
{ 80: 164 readonly ! mem(mtl, Ox0, 0Ox0) }
mtl = memory 0x130000000

block/(v@: 164, vl1l: 164):
v2 = 1reduce.i32 vl
v3 ! range(64, 0Ox0, Oxffffffff) = uextend.164 v2
vd | mem(mtl, Ox0, Ox0) = global value.i164 gv4
v I mem(mtl, Ox0, Oxffffffff) = 1add v4, v3
vo = load.f64 1little checked heap v5

Proof-Carrying Code

“memory types” describe layout
function u@:0(164 vmctx, 164) fast {

gv3 | mem(mtO,l Ox0, 0Ox0)
gv4d | mem(med’ OX0, 0x0)

VMC T X
load.164 notrap aligned

mt® = struct 88
{ 80: 164 readonly ! mem(mtl, Ox0, 0Ox0) }

YN NN N N NN

ML = MEMOTYy UX1IoUuuuuuu

block/(v@: 164, vl1l: 164):
v2 = 1reduce.i32 vl
v3 ! range(64, 0Ox0, Oxffffffff) = uextend.164 v2
vd | mem(mtl, Ox0, Ox0) = global value.i164 gv4
v I mem(mtl, Ox0, Oxffffffff) = 1add v4, v3
vo = load.f64 1little checked heap v5

Proof-Carrying Code

function u0:0(164 vmctx, 164) fast {
gv3d | mem(mt@O. Ox0. O0x0) vimc t x

gv4d limem(mtl, Ox0, Ox0) load.164 notrap aligned
readonly checked gv3+80

mtO =Lsdruget=383
{ 80: 164 readonly ! mem(mtl, Ox0, Ox0) }
mtl = memory 0Ox130000000

facts on fields checked when loads are validated

block/7(v0O: 164, vl: 164
v2 = 1reduce.132 vl
v3 ! range(64, 0Ox0, Oxffffffff) = uextend.164 v2
vd I mem(mtl, Ox0, Ox0) = global value.164 gv4
v I mem(mtl, Ox0, Oxffffffff) = 1add v4, v3
vo = load.f64 1little checked heap v5

Proof-Carrying Code

function u@:0(164 vmctx, 164) fast {
gv3d | mem(mt®, Ox0, Ox0) vimc t X
gvd | mem(mtl, Ox0, 0Ox0) load.164 notrap aligned
readonly checked gv3+30

mt® = struct 88
{ 80: 164 readonly ! mem(mtl, Ox0, 0Ox0) }
mtl = memory 0x130000000

Implicitly-validated fact based on range

block/7(vO: 164, vl1: 164):

VZ — 1rer:||'!ce 1?7 \11

v3 ! range (64, @x@ @xffffffff) = uextend.164 v2
V4 Hememrnt Oy CxCy———gooal value.164 gv4
v I mem(mtl, 0Ox0, @xffffffff) = jadd v4, v3

AS load. f64 11tt1e checked heap v5

Proof-Carrying Code

function u@:0(164 vmctx, 164) fast {
gv3d | mem(mt®, Ox0, Ox0) vimc t X
gvd | mem(mtl, Ox0, 0Ox0) load.164 notrap aligned
readonly checked gv3+30

mt® = struct 88
{ 80: 164 readonly ! mem(mtl, Ox0, 0Ox0) }
mtl = memory 0x130000000

abstract-domain add operation

block7(v®: 164, vl1: 164):
v2 = 1reduce.132 vl
v3 ! range (64, @x@ @xffffffff) = uextend.164 v2

V4 plememrnt ey =OxCy=CxCy——=gooal value.164 gv4
v ! mem(mtl, @x@ @xffffffff) = jadd v4, v3
VO =TT 0duNToa Tl re Ciieckedieap vS

Proof-Carrying Code

function u@:0(164 vmctx, 164) fast {
gv3d | mem(mt®, Ox0, 0Ox0) vimc T X
gvd | mem(mtl, Ox0, 0Ox0) load.164 notrap aligned
readonly checked gv3+80

mt® = struct 88
{ 80: 164 readonlv ! mem(mtl, Ox0, Ox0) }
mtl = memory 0x1380000000

checked load permitted only when offset

in-bounds for memory type (here 4GiB)

block/(v@: 164, vl1l: 164):
v2 = ireduce.132 vl
v3 ! range(64, Ox0, Oxffffffff) = uextend.i164 v2
vd 1 mem(mtl __ Ov6 _Ayv6) = olaohy]l value.164 gv4
v5 | mem(mtl Ox0, @xffffffff) = jadd v4, v3

= load. To4 11tt1e checked| heap V>

Proof-Carrying Code: Dynamic Bounds

block@(v@

V2

' mem(mtO®, O, 0O):

dynamic range (64,

V3 | dynam1c mem(mtl,
V4 pegitinamds ettt g e o]
v | compare(uge vl,
V6 | U_YIICIIIIIL IIICIII\IIILJ.,
v/ ! dynamic mem(mtl,
v8 ! dynamic mem(mtl,
v9

return v9

164, vl
vl, vl)
O, 0)
TRV 2)
gv2)

> |)

vi, V.1)

I dynamic range(32 vl, v1): 132):

O, O, nullable)

O, gv2-1,

nullable)

uextend. 164 vl

global value.i164 gvl
glooa- value.i164 gv2
icmp.164 uge v2, v4
iadd.164 v3, v2
iconst.i64 @

select spectre guard v5,
load.164 checked v38

v/,

Vb

Proof-Carrying Code: Dynamic Bounds

block@(v@ ' mem(mt@ O, 0): 164, vl ! dynamic range(32 vl, vl): 132):
v2 ! dynamic ra1ge(64 vl, vl) = uextend. 164 vl
v3 ! dynamic mem(mtl, O, 0) global value.i164 gvl
vd | dynamic rawge(64 ng gv2) glooa- value.164 gv2
V5 | =Geompadsa g oumettlapmagiils icmp.164 uge v2, v4

iadd.164 v3, v2
iconst.164 @

select spectre guard v5, v/, vb6
load.164 checked v38

vo | dynam1c mem(mtl vl, vl)

v/ ! uyliranrrc MCM\MLL, 6, 6, uullable)

v8 ! dynamic mem(mtl, 0, gv2-1, nullable)
v9

return v9

Proof-Carrying Code: Dynamic Bounds

block@(v@ ! mem(mt@ O, 0): 164, vl ! dynamic range(32 vl, vl): 132):
V2 dynamic ra1ge(64 vl, vl) = uextend. 164 vl
V3 | dynamic mem(mtl, 0, 0O) = global value.i164 gvl
vd | dynamic range(64, gv2, gv2) = global value.i164 gv2
v ! compare(uge, vl, gv2) = 1cmp.164 uge v2, v4
ve ! dynamic mem(mtl, vl1, vl) = jadd.164 v3, v2
V7 lp=gynamisemnam il O SO S TGO Gt “
2. dynam1c mem(mtl, O, gv2—1, nullable) = select spectre guard v>, v/, vb6
v9 = L0du. o4 CileCReu vo
return v9

Proof-Carrying Code: Dynamic Bounds

block@(v@ ! mem(mt@ O, 0): 164, vl ! dynamic range(32 vl, vl): 132):
V2 dynamic ra1ge(64 vl, vl) = uextend. 164 vl
V3 | dynamic mem(mtl, 0, 0O) = global value.i164 gvl
vd | dynamic range(64, gv2, gv2) = global value.i164 gv2
v ! compare(uge, vl, gv2) = 1cmp.164 uge v2, v4
ve ! dynamic mem(mtl, vl1, vl) = jadd.164 v3, v2
V/ |lp=gyenamaeenentitlep=_ O SO S TGO Gt “
2. dynam1c_mem(mt1, 0, gv2—1, nullable) = select spectre guard v>, v/, vb6
v9 = L0du. o4 CileCReu vo
return v9

 [oo many pieces to put together: compare; symbolic addr; symbolic bound;
select operator

Proof-Carrying Code: Dynamic Bounds

block@(v@ ! mem(mt@ O, 0): 164, vl ! dynamic range(32 vl, vl): 132):
V2 dynamic ra1ge(64 vl, vl) = uextend. 164 vl
V3 | dynamic mem(mtl, 0, 0O) = global value.i164 gvl
vd | dynamic range(64, gv2, gv2) = global value.i164 gv2
v ! compare(uge, vl, gv2) = 1cmp.164 uge v2, v4
ve ! dynamic mem(mtl, vl1, vl) = jadd.164 v3, v2
V/ |lp=gyenamaeenentitlep=_ O SO S TGO Gt “
2. dynam1c_mem(mt1, 0, gv2—1, nullable) = select spectre guard v>, v/, vb6
v9 = L0du. o4 CileCReu vo
return v9

 [oo many pieces to put together: compare; symbolic addr; symbolic bound;
select operator

* Quadratic behavior arises from combination of these pieces when merged by
optimizer

Proof-Carrying Code: Dynamic Bounds

block@(v@ ! mem(mt@ O, 0): 164, vl ! dynamic range(32 vl, vl): 132):
V2 dynamic ra1ge(64 vl, vl) = uextend. 164 vl
V3 ! dynamic mem(mtl, 0, 0O) = global value.i164 gvl
vd | dynamic range(64, gv2, gv2) = global value.i164 gv2
v ! compare(uge, vl, gv2) = 1cmp.164 uge v2, v4
ve ! dynamic mem(mtl, vl1, vl) = jadd.164 v3, v2
V/ |lp=gyenamaeenentitlep=_ O SO S TGO Gt “
2. dynam1c_mem(mt1, 0, gv2—1, nullable) = select spectre guard v>, v/, vb6
v9 = L0du. o4 CileCReu vo
return v9

* |nsight: if you can’t solve the problem, change the problem
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

Proof-Carrying Code: Dynamic Bounds

block®@(vO ! mem(mtO, O, 0): 164, vl: 132):
V2
vy | dynam1c mem(mtl, O, ©)

\I/I ' \ll"\"\m ﬂﬂﬂﬂﬂﬂﬂ /C/I f\‘\l—) f‘l‘\l—)\
¥ " = 4

uextend.i164 vl
global value.i164 gvl

f'l'-lf\l"\"\-l \l"\-lllf\ C/I T\ _)

N - e —_— O T N 7T O " T T T T e i

v ! dynam1c “mem(mtl, ,@?'gQZ?i, nullable) dynam1c bound 164 93 v2, v4

vV VU LUdU . IU“I' LIICL[\CU VJ

return vo

* |nsight: if you can’t solve the problem, change the problem
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

Proof-Carrying Code: Dynamic Bounds

block®@(vO ! mem(mtO®, 0, 0): 164, vl: 132):

V2 = uextend.164 vl
vy | dynam1c mem(mtl, 0, 0O) = global value.i164 gvl
v AN — 1l AkhAl \ 7 'I..n C/I ~ys)

| Avinama -~ vrrAanecan (C AN o AWAD o AWAD I\
o i o B N — — O - = ===

v5 | dynam1c “mem(mtl, ,@?'gQZ?i, nullable) dynam1c bound 164 93 v2, v4

vV VU LUdU . IU“I' LIICL[\CU VJ

return vo

* |nsight: if you can’t solve the problem, change the problem
(carry through a “bounds-check” operator in the IR to a pseudo-machine-inst)

Subtle but important impact: separate value identity for property with separate
validation status

Proof-Carrying Code: Dynamic Bounds

v2 = uextend.i64 vl mov rax, ..
v3 = global value.i64 gvl mov rsi, [rdi+.]
vd = global value.i64 gv?2 mov rcx, [rdi+..]
v5 = dynamic bound.i64 v3, v2, v4 Xxor rg, ra
— add rsi, rax
cmp rax, rcx
cmovae rsi, r8 ;:; zero 1f out-of-bounds
ve = load.i64 checked v5 mov rax, [rsi]
return vo

 Emit dynamic bound as “pseudoinstruction” (bundled machine instructions)
and check as one unit: can show that combined semantics correspond

Symbolic Register Allocator Checker

 We’ve verified only up to virtual register code (VCode) — regalloc still in TCB

 Can we do translation validation on regalloc separately??

add
mov
mov
ret

v, vl

v3, [v2+vO*8]

[v4+v5],

V3

Symbolic Register Allocator Checker

Register allocation: provide abstraction
over real machine instructions with
virtual registers

Symbolic Register Allocator Checker

' o
add vO, vl Equivalent: add rax, rcx
mov v3, [v2+v0*8] E——————— oy r8, [r9+rax*8]
mov [v4+v5], v3 mov [rlO+rll], r8
ret ret

Symbolic Register Allocator Checker

' o
add vO, vl Equivalent: add rax, rcx
mov v3, [v2+v0*8] E——————— oy r8, [r9+rax*8]
mov [v4+v5], v3 mov [rlO+rll], r8
ret ret

- Scan forward through code
- Track “contents” of each register
- Validate each arg gets expected vreg

add
mov
mov
ret

v, vl

v3, [v2+v0*8] >

[v4+v5],

Symbolic Register Allocator Checker

Equivalent?
q add rax, rcx

mov r8, [r9+rax*3]
V3 mov [rlO+rll], r8
ret

input: rax={v0}, rcx={v1}, r9={v2},
r10={v4}, r11={v5}

rax = {vO (update)}

r8 = {v3}

- Scan forward through code
- Track “contents” of each register
- Validate each arg gets expected vreg

Symbolic Register Allocator Checker

* Aside: this is a fantastically effective way to write a new register allocator

Symbolic Register Allocator Checker

* Aside: this is a fantastically effective way to write a new register allocator

* Production regalloc often involves a lot of heuristics and edge-cases with
funny constraints

* | could not have found and resolved all edge-cases without it

Symbolic Register Allocator Checker

* Aside: this is a fantastically effective way to write a new register allocator

* Production regalloc often involves a lot of heuristics and edge-cases with
funny constraints

* | could not have found and resolved all edge-cases without it
e So effective that this is the only test method for regalloc?2 (no static suite)

 We’ve never found a miscompilation due to RA in production in ~3 years

WebAssembly is Secure!

.................................... Sandbox boundary
—~\ | [
— -

WebAssembly is Secure!

R Sandbox boundary:

. . - Formal verification of instruction sel
— _— - Translation validation of key parts

. E (regalloc, memory sandboxing?)
— —

WebAssembly is Secure!

R Sandbox boundary:

. . - Formal verification of instruction sel
— _— - Translation validation of key parts

. E (regalloc, memory sandboxing?)
— —

V. Secure

...WebAssembly is Secure?

Sandbox boundary:

- Formal verification of instruction sel

- Translation validation of key parts
(regalloc, memory sandboxing?)

?? Secure?

WebAssembly is Secure?

e What is the threat model?

WebAssembly is Secure?

e What is the threat model?

* Code attempting to exceed permissions on system: OK!

WebAssembly is Secure?

 What is the threat model”?
* Code attempting to exceed permissions on system: OK!

* Code attempting to exceed permissions inside guest

WebAssembly is Secure?

 What is the threat model”?
* Code attempting to exceed permissions on system: OK!
 Code attempting to exceed permissions inside guest
* Exploit runtime / language implementation bugs to...

e ...Observe other requests’ data

WebAssembly is Secure?

e \What is the threat model?

* Code attempting to exceed permissions on system: OK!
 Code attempting to exceed permissions inside guest
* Exploit runtime / language implementation bugs to...
e ...Observe other requests’ data
e ...Subvert authorization logic

e ...Inject malicious content

* We still need a correct language implementation for application security

WebAssembly is Secure?

Cloudbleed XA 5 languages

Article Talk Tools v

From Wikipedia, the free encyclopedia

Cloudbleed was a Cloudflare buffer overflow disclosed by
Project Zero on February 17, 2017. Cloudflare's code disclosed
the contents of memory that contained the private information
of other customers, such as HT TP cookies, authentication
tokens, HTTP POST bodies, and other sensitive data.ll! As a

WebAssembly is Secure?

Cloudbleed XA 5 languages

Article Talk Tools v

From Wikipedia, the free encyclopedia

Cloudbleed was a Cloudflare buffer overflow disclosed by
Project Zero on February 17, 2017. Cloudflare's code disclosed
the contents of memory that contained the private information
of other customers, such as HT TP cookies, authentication
tokens, HTTP POST bodies, and other sensitive data.ll! As a

Defense-in-depth: per-request isolation
-> even a buggy runtime cannot allow cross-user leakage

WebAssembly is Secure?

Cloudbleed XA 5 languages

Article Talk Tools v

From Wikipedia, the free encyclopedia

Cloudbleed was a Cloudflare buffer overflow disclosed by
Project Zero on February 17, 2017. Cloudflare's code disclosed
the contents of memory that contained the private information
of other customers, such as HT TP cookies, authentication
tokens, HTTP POST bodies, and other sensitive data.ll! As a

Defense-in-depth: per-request isolation
-> even a buggy runtime cannot allow cross-user leakage

AKA: put the Wasm sandbox boundary between requests

Building a Correct(-ish) JavaScript Runtime

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

o Step 2: avoid the JIT compiler of that runtime

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

o Step 2: avoid the JIT compiler of that runtime

* Optimization logic bugs (especially type confusion) account for many CVEs

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

e Step 2: avoid the JIT compiler of that runtime
* Optimization logic bugs (especially type confusion) account for many CVEs

 But don’t you want performance?! (yes... we’ll get there)

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

e Step 2: avoid the JIT compiler of that runtime
* Optimization logic bugs (especially type confusion) account for many CVEs
 But don’t you want performance?! (yes... we’ll get there)

e ... and it’s all we can run on Wasm anyway, today

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

e Step 2: avoid the JIT compiler of that runtime
* Optimization logic bugs (especially type confusion) account for many CVEs
 But don’t you want performance?! (yes... we’ll get there)
e ... and it’s all we can run on Wasm anyway, today

e Step 3: ... fix performance

Building a Correct(-ish) JavaScript Runtime

e Step 1: use someone else’s runtime

* QOur friends at Mozilla do lots of fuzzing, testing, security things;
SpiderMonkey is battle-tested

e Step 2: avoid the JIT compiler of that runtime
* Optimization logic bugs (especially type confusion) account for many CVEs
 But don’t you want performance?! (yes... we’ll get there)
e ... and it’s all we can run on Wasm anyway, today

o Step 3: ... fix performance (?77)

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms
Overview

O Build and test 'passing

rr is a lightweight tool for recording, replaying and debugging execution of applications (trees of processes and
threads). Debugging extends gdb with very efficient reverse-execution, which in combination with standard gdb/
x86 features like hardware data watchpoints, makes debugging much more fun. More information about the

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms
Overview

e [T cuUrrently requires either:
o An Intel CPU with Nehalem (2010) or later microarchitecture.

o Certain AMD Zen or later processors (see https://github.com/rr-debugger/rr/wiki/Zen)

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

Native x86_64-linux
rr

perf
gdb
valgrind
asan

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

Native x86_64-linux Wasmtime
i gdb kind of works
perf
gdb
valgrind

asSdl

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

Native x86_64-linux Wasmtime
! gdb kind of works
gdb pert but steps through runtime too
valgrind

asSdl

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

Native x86_64-linux Wasmtime
! gdb kind of works
gdb pert but steps through runtime too

valgrind DWARF transform assertion failures

asSdl

An Ode to Interpreters

* An Interpreter Is the easiest — and thus most likely to be correctly written —
Implementation of a language

* Jypical tiering architectures in JITs mean that interpreters are “simple”™ —
focus on correctness rather than (too much) performance

* An interpreter is portable — and thus can be developed on native platforms

Native x86_64-linux Wasmtime
! gdb kind of works
gdb pert but steps through runtime too

valgrind DWARF transform assertion failures

asSdl @

Single Source of Truth

* Interpreter will exist anyway (JIT tiers, fallback); is easier to get right; works
fine on Wasm (naturally portable); it’s just... slow

 Can we keep the interpreter as the only language implementation, and
somehow derive a compiler from it?

Compiler Backend?

switch(*pc++) {

case ADD:
auto a
auto b
push(a
break;
case RET:
return

+ 1l

b) ;

pop () ;

pop () ;
pop () ;

func:

ADD
RET

Compiler Backend?

switch(*pc++) { func () {
case ADD:
—p
- fun C:
ADD !
case RET: RET

;

Compiler Backend?

switch(*pc++) { func () {
case ADD:
—p
func:
ADD
case RET: RET

;

Key insight: Wasm is a small, introspectable, well-behaved IR;
partial evaluation should be tractable (moreso than on native code)

weval: Partial Evaluation of Wasm

 Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

weval: Partial Evaluation of Wasm

 Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

* \ery very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

weval: Partial Evaluation of Wasm

 Key idea: produce specializations of functions in a Wasm module with respect
to some constant inputs (namely, interpreted bytecode)

* \ery very very important guiding principle: no magic, only semantics-
preserving transforms; specialized function behaves identically to original

* (Gives us a compiler “for free” once we have an interpreter

Specialization Intrinsics

vold interp(bytecode* pc) {
while (true) {

switch (*pc++) {
case OP1:

break;
case 0OP2:

break;

Specialization Intrinsics

vold 1nterp(bytecode* pc) { vold 1nterp(bytecode* pc) {

while (true) { while (true) {
switch (*pc++) { switch (*pc++) {
case 0OP1: case OP1:
break; break;
case 0OP2: case 0OP2:
break; break;
))
))

Specialization Intrinsics

vold interp(bytecode* pc) {

. "No magic”: only expand code .
where interpreter specifies via while (t I’UE) {
context mechanism switch (*pc++) {

case OP1l:
. Partially evaluate iterations of the
Interpreter loop In a context-
sensitive way, where the context break;
s the bytecode PC case OPZ:
3. ... and that’s it. break
;

Discussion: Compilers from Interpreters

* This works; shipping in StarlingMonkey runtime; ~2-3x speedups

Discussion: Compilers from Interpreters

* This works; shipping in StarlingMonkey runtime; ~2-3x speedups

 We are deriving a JIT from first principles from an interpreter

Discussion: Compilers from Interpreters

* This works; shipping in StarlingMonkey runtime; ~2-3x speedups
 We are deriving a JIT from first principles from an interpreter

* We are avoiding doing anything special or language/JIT-engine-specific

Discussion: Compilers from Interpreters

* This works; shipping in StarlingMonkey runtime; ~2-3x speedups

 We are deriving a JIT from first principles from an interpreter

* We are avoiding doing anything special or language/JIT-engine-specific

* We think we can get more optimizations by writing semantics-preserving rules

 E.g., profile-guided speculative inlining + box-unbox elision to get type-
specialized unboxing in JS

Discussion: Correctness-Focused Runtimes

* Correct software is a never-fully-attained goal (realistically)

 But we can carefully delineate abstraction boundaries and validate them
separately

Discussion: Correctness-Focused Runtimes

* Observation: limited formal methods can be practical in practice
» SMT-based checking of compiler lowering rules
o Symbolic checker of register allocator

 Maybe”? proof-carrying code for sandboxing logic

Discussion: Correctness-Focused Runtimes

* Observation: limited formal methods can be practical in practice
» SMT-based checking of compiler lowering rules
o Symbolic checker of register allocator
 Maybe”? proof-carrying code for sandboxing logic

* Observation: meta-compilers (deriving compilers from simpler
representations) can be practical in practice

 weval is much smaller than the full compiler-to-Wasm would have been

Discussion: Correctness-Focused Runtimes

* Observation: limited formal methods can be practical in practice
» SMT-based checking of compiler lowering rules
o Symbolic checker of register allocator
 Maybe”? proof-carrying code for sandboxing logic

* Observation: meta-compilers (deriving compilers from simpler
representations) can be practical in practice

 weval is much smaller than the full compiler-to-Wasm would have been

 Wasm has set an excellent precedent for explicit semantics, static typing, and
focus on small clean abstractions

Thanks! Questions?

